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Confinement-induced resonances in anharmonic waveguides
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We develop the theory of anharmonic confinement-induced resonances (ACIRs). These are caused by
anharmonic excitation of the transverse motion of the center of mass (c.m.) of two bound atoms in a waveguide.
As the transverse confinement becomes anisotropic, we find that the c.m. resonant solutions split for a
quasi-one-dimensional (1D) system, in agreement with recent experiments. This is not found in harmonic
confinement theories. A new resonance appears for repulsive couplings (a3D > 0) for a quasi-two-dimensional
(2D) system, which is also not seen with harmonic confinement. After inclusion of anharmonic energy
corrections within perturbation theory, we find that these ACIRs agree extremely well with anomalous 1D
and 2D confinement-induced resonance positions observed in recent experiments. Multiple even- and odd-order
transverse ACIRs are identified in experimental data, including up to N = 4 transverse c.m. quantum numbers.
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I. INTRODUCTION

Ultracold low-dimensional atomic gases show unique quan-
tum properties and have attracted a great deal of interest. For
a one-dimensional (1D) Bose gas [1–3], the finite-temperature
correlations predicted for a Tonks-Girardeau gas [4,5] have
been experimentally verified [6,7], and a crossover to a
nonequilibrium super-Tonks-Girardeau gas has been realized
[8]. For a two-dimensional (2D) geometry, the Berezinskii-
Kosterlitz-Thouless phase transition was predicted [9,10] and
subsequently observed in experiment [11]. In these experi-
ments, one or two spatial degrees of freedom are removed by
introducing tight confinement via an optical lattice or a tightly
focused anisotropic dipole trap.

Atomic interactions can also be tuned precisely by means
of a molecular Feshbach resonance in an external magnetic
field [12–14]. This allows an effective contact interaction
with scattering length a3D to be created, with scattering
lengths that can be varied over a wide range of positive and
negative values. Owing to these methods, low-dimensional
atomic gases now provide a high degree of control for tests
of fundamental many-body physics in reduced dimensions.
These systems are often much simpler than condensed-matter
physics experiments, which have complex crystal structure,
interactions, and disorder.

Confinement-induced resonance (CIR) is one of the most
intriguing phenomena found in low-dimensional systems.
These were first predicted theoretically by Olshanii [15], who
considered a two-body s-wave scattering problem in a quasi-
1D trap with cylindrically symmetric transverse harmonic
confinement. The CIR can be understood as a novel type
of Feshbach resonance, where the transverse ground mode
and the manifold of molecular internally excited modes play
the roles of the open and closed channels, respectively [16].
Related effects occur in mixed dimensional traps [17,18].
A direct generalization of Olshanii’s theory to anisotropic
transverse confinement shows that there is only one harmonic
CIR (HCIR), no matter how large the transverse anisotropy
[19]. For large anisotropy, this theory crosses over smoothly
to the case of a quasi-2D trap, where a single HCIR occurs
with a negative s-wave scattering length, a3D < 0 [20–22].

There have been a number of related experimental in-
vestigations, which in some cases appear to contradict each
other. In the recent Innsbruck Cs experiment with a quasi-1D
geometry [23], two or more resonances were observed as the
transverse confinement became more and more anisotropic.
For a quasi-2D geometry, some experiments have observed
2D resonances on the attractive side with a3D < 0 [24], while
others have resonances on the repulsive side with a3D > 0
[23,25]. The observations of both multiple resonances and
2D resonances with repulsive interactions are in disagreement
with standard HCIR predictions [20–22].

In this paper, a detailed explanation is proposed for
these anomalous resonances. The mechanism is that the new
resonances are due to center-of-mass (c.m.) excitations of
molecules or atom pairs. These have a different character than
the excitation of internal molecular degrees of freedom found
in the Olshanii approach and its generalizations. The new c.m.
resonances can only become coupled to the input state by
anharmonic terms in the trapping potential. Hence, we term
these effects anharmonic confinement-induced resonances
(ACIRs). The ACIRs cannot occur in harmonic traps due to
Kohn’s theorem [26]. However, they are certainly observable
in current ultracold atomic physics experiments, which have
relatively large anharmonicities.

The coupling of the c.m. motion to the relative motion
gives additional degrees of freedom not found with parabolic
traps. This causes a series of additional scattering resonances
due to the mixing of c.m. and relative motion. The nonlinear
mixing caused by anharmonic terms in the potential makes
these phenomena analogous to frequency-mixing effects found
in nonlinear optics. They provide a fundamentally new pairing
mechanism, which may lead to new opportunities for quantum
engineering in atomic, photonic, or acoustic waveguides. Our
results are therefore qualitatively different than harmonic CIR.
We predict both multiple 1D resonances and 2D resonances
with repulsive interactions. Both results are in quantitative
agreement with experiment.

We note that this possibility was also envisaged in three
earlier papers. Peano et al. [27] addressed the general idea,
although using a different technique and for a different type
of trap. Kestner and Duan [28] treat anharmonic resonance
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in a double well. In a more recent investigation, parallel to
our own, Sala et al. [29] have also concluded that the recent
Innsbruck experiments provide evidence for ACIRs. The main
differences in the treatment are that we have accurately
calculated the size of the anharmonic resonance shifts, as well
as giving quantitative estimates of relevant parameters. We also
compare our theory with the observed multiple resonances,
including even- and odd-order c.m. resonances.

The paper is arranged as follows. We first analyze the
types of transverse excitations available and the operational
processes that can lead to the observed resonances (Sec. II). In
Sec. III, a Hamiltonian model of nonlinear CIR is presented,
by introducing anharmonic perturbations in the Hamiltonian.
In Sec. IV, this is analyzed using perturbation theory for the 1D
case. The results are compared to experiments on anisotropic
traps, showing the observed splitting is well explained with the
anharmonic c.m. resonance ACIR model. Next, we consider
results for the case of large trap anisotropies and demonstrate
that the observed resonances can be quantitatively explained
with excellent accuracy by considering multiple resonances
with both even- and odd-order c.m. transverse quantum
numbers. A similar calculation is carried out for a quasi-2D
system in Sec. V, which is also compared with experiment.
The main results are summarized in Sec. VI.

II. TWO-BODY CIR PHYSICS

In recent one- and two-dimensional confinement-induced
resonance experiments, there are many observed resonances
not explained by conventional CIR theory. In two dimensions,
resonances are observed for a3D > 0 [the Bose-Einstein
condensate side of the resonance], which is the opposite to that
expected in the usual theory. Similarly, unexplained multiple
resonances occur for one-dimensional CIRs with anisotropic
transverse confinement. These are also not predicted by
the simple two-particle model [15] with linear confinement.
However, the experiments have some features not included
in this idealized model, and the obvious question is: Which
experimental properties are responsible for the additional
observed resonances?

A. Harmonic CIR solutions

The possible modes of excitation of a pair of atoms in a
transverse potential are illustrated in Fig. 1. The c.m. mode
is shown in Fig. 1(a), with two atoms moving together. This
is not coupled to the atomic ground state in a harmonic trap,
due to Kohn’s theorem. The relative motion mode is shown in
Fig. 1(b), with an excitation of the relative coordinate. This is
the usual harmonic confinement-induced resonance in a one-
dimensional waveguide with a transverse parabolic potential.
The HCIR is simply the first internally excited resonance of
the two-body ground state.

However, there is a subtlety here. Both types of excitation
are adiabatic continuations of the transversely excited free-
particle states, as the interparticle interaction is increased. The
free-particle states have both c.m. quantum numbers Nx,Ny,

and internal quantum numbers, nx,ny . Therefore, there are a
large number of possible excited states that could, in principle,

(a)

(b)

FIG. 1. (Color online) (a) Illustration of an ACIR, in which two
atoms are driven in a moleculelike excited state with a transverse c.m.
motion in the trap. Both atoms move together, to give a transverse
resonance of the c.m. degree of freedom. This is only coupled to the
atomic ground state if the potential is anharmonic. (b) Illustration
of an HCIR, in which the atoms move in relative motion to give an
excited state rather like a conventional vibrational excited state of a
molecule.

be coupled to the atomic ground state in a Feshbach type of
resonance.

In a rotationally symmetric model, both the internal and
c.m. excited states near 2h̄ω are degenerate in energy and
cannot lead to distinct resonances even if coupled to the
incoming states. If there is no rotational symmetry, this
degeneracy is broken, leading to the possibility of multiple
resonances. Experimentally there is more than one resonance
in the recent Innsbruck experiment [23]. Owing to the
similarity with the HCIR predictions [15], these were initially
identified as conventional harmonic CIRs, corresponding to
excitations of internal degrees of freedom.

However, an analysis of the anisotropic case [19] indicates
that internally excited two-body states only give rise to only
a single CIR. We note that Kohn’s theorem [26] prohibits the
excitation of c.m. resonances from incoming states with no
transverse momentum, if the confinement is parabolic. One
may ask why there are not multiple CIR eigenstates with
different internal energies due to the different confinement
strength in orthogonal trap directions. The reason for this is
due to the singular nature of the interaction.

Consider what happens to a single particle in a rotationally
symmetric potential, which corresponds to the internal quan-
tum numbers in a relative coordinate picture of a two-particle
problem. In a 2D system of noninteracting particles in a har-
monic oscillator potential, the ground state has nx = ny = 0.
The internally excited states can therefore be labeled either by
their internal harmonic oscillator quantum numbers for relative
motion or by their angular momentum quantum numbers. For
this, one can have nx = ny = 1, or else a radial quantum
number nr and a magnetic quantum number m. Owing to the
singular potential at the origin, only s-wave incoming states
with m = 0 experience any coupling. This leads to a relatively
low-lying excited state due to the coupling and, hence, to
a single CIR. This state is adiabatically deformed when the
symmetry is broken, without leading to a second CIR.
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This single degenerate CIR exists on the positive side of
the Feshbach resonance, i.e., a3D > 0, for a quasi-1D system.
It transfers to the negative side, i.e., a3D < 0, for a large
asymmetry or a quasi-2D system. This last conclusion is
compatible with other calculations of 2D CIR. However, these
conclusions only take into account the internal energy of a
two-particle state, not the c.m. energy.

B. Anomalous CIR experiments

In recent bosonic experiments on ultracold 137Cs at
Innsbruck [23], a strong, transversely anisotropic quasi-1D
confinement is used to create an initially strongly repulsive
(a3D > 0) Tonks gas. This is followed by a sudden change
in B field to a new value, resulting in a molecular loss
signature for a resonance which is confinement dependent.
Numerous multiple confinement-induced resonances are ob-
served. There is even an unexpected resonance for a3D > 0 in
the 2D limit, which has also been measured using release
energy data in fermionic 6Li experiments [25]. All these
observations contradict the harmonic waveguide theory given
above.

However, it is important to recognize that the waveguide
potentials in these experiments are generally anharmonic, so
Kohn’s theorem does not apply. Hence, there are more degrees
of freedom available for excitation, since the c.m. quantum
numbers must now be included in the description.

The interesting issue is whether these observed CIR effects
can be explained as anharmonic resonances (ACIRs) due to
center-of-mass excitations of resonant bound states [27–29].
This is illustrated by the two atoms moving together in
Fig. 1(a). Such effects can only occur in an anharmonic
trapping environment, which allows coupling between incom-
ing scattering states with zero transverse excitation and an
outgoing transverse c.m. excitation.

In another 2D experiment on ultracold 40K at Cambridge
[24], a CIR occurs on the attractive side of a Feshbach
resonance, as expected. This experiment has a much lower
anharmonicity than the Innsbruck experiment. It also uses
a different technique to identify the resonance, employing
rf spectroscopy rather than molecular losses. Thus, there
are distinct resonance signatures used in the two published
experiments. The Cambridge data appear to show evidence
for anomalous resonance features on the a3D > 0 side of
the Feshbach resonance, but this effect is greatly reduced
compared to the Innsbruck observations.

All Feshbach bound states have a bound molecular fraction
[30] in which the atoms have a small separation. We conjecture
that this molecular fraction is larger for (a) c.m. ACIRs,
where the atoms are in a relative ground state, compared
to (b) internally excited HCIRs, where the atoms are in a
relative excited state. This would mean that c.m. excitations
would have a relatively larger three-body recombination loss
due to molecule formation. This is precisely the signature
of the resonances used in the Innsbruck experiments. On
the other hand, rf spectroscopy, used in the Cambridge
experiments, has different characteristics. Thus, it is not
unreasonable to expect the two experiments to have a
different relative sensitivity to internal and c.m. molecular
resonances.

III. ANHARMONIC WAVEGUIDES

For technical reasons explained below, current CIR exper-
iments typically involve an anharmonic confinement mech-
anism. In such cases, the excitation of a c.m. degree of
freedom can be coupled to input states with no transverse c.m.
excitation. This coupling mechanism would explain observed
anomalies, such as multiple resonances, that are different
than those predicted using the standard parabolic confinement
theory.

There are three possibilities which might allow resonant
coupling to additional confinement-induced bound states
through nonlinear mechanisms:

(1) The Kohn theorem only applies for parabolic confine-
ment. Experimentally the optical confinement is sinusoidal
and/or Gaussian, not parabolic. This allows direct coupling to
Nx = 2 states, or even Nx = 1 states, depending on the type
of anharmonicity.

(2) In some experiments the width of the Feshbach reso-
nance is comparable to the separation of the transverse modes,
allowing contributions from the molecular bound-state channel
as well as the atomic channel. This still requires anharmonic
coupling to access bound states having c.m. transverse energy.

(3) At high density the mean-field background potentials of
the other atoms may provide an anharmonic effective potential
which is not parabolic. In such cases, one may expect the
collective oscillation frequencies to play a role.

Coupling to c.m. excitations is possible whenever the
transverse response is nonlinear and the potential departs from
a parabolic shape. This is not inconsistent with the ultracold
atomic physics experiments, which generally involve sinu-
soidal laser trapping potentials. These are only approximately
parabolic in the strongly confined limit. It is this possibility
of nonlinear CIR due to anharmonic confinement which is
explained below. Although related theoretical work that has
been carried out includes one or the other of these effects, it
is important to include both anisotropy and anharmonicity to
fully explain the observed ACIRs.

A. Hamiltonian

In this paper, we consider the simplest model of nonlinear
CIR, with a single-channel s-wave interatomic potential and
an anharmonic trapping potential. We do not take into account
either many-body corrections or explicit molecule formation
channels [30]. This model is therefore applicable to relatively
dilute quantum gases with a broad Feshbach resonance. To
model the nonlinear CIR effect in greater detail, consider
two atoms with mass m which are anisotropically confined
in the transverse direction and can almost freely move in the z

direction. Such a model can treat both a quasi-1D and quasi-2D
experiments, by taking one of the trapping frequencies to zero.
The Hamiltonian of the two atoms in a quasi-1D system is,
therefore,

H = H1 + H2 + U (r1 − r2), (3.1)

where

U (r) = g3Dδ(r)
∂

∂r
r (3.2)
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is the atomic interaction for s-wave scattering described by
a zero-range pseudopotential with interaction strength g3D =
4πh̄2a3D/m corresponding to a scattering length of a3D, and
Hi is a single-particle Hamiltonian including external potential
and kinetic energy terms.

1. Anharmonic confinement potential

For dipole trapping experiments with 1D and 2D optical
lattices, the trapping potential near a potential minimum at
r = 0 is due to an optical standing wave of the form

U ext(r) = Vx(r) sin2

(
2πx

λx

)
+ Vy(r) sin2

(
2πy

λy

)

≈ 1

2
m

[
ω2

xx
2

(
1 + αxx

2

d2
x

+ r · ∇Vx

V 0
x

+ · · ·
)

+ω2
yy

2

(
1 + αyy

2

d2
y

+ r · ∇Vy

V 0
y

+ · · ·
)]

. (3.3)

Here, Vx,y(r) are the two orthogonal slowly varying potential
energy envelopes of standing waves due to the atomic dipole
interactions with the two trapping lasers at optical wavelengths
λx , λy . Thus, V 0

x,y are potential well depths, leading to trap
frequencies ωx, ωy in the x, y directions. We have used a scale
length of the reduced oscillator lengths dx,y = √

2h̄/mωx,y

in each direction. It is also common to use the single-atom
oscillator length definition of ax,y = √

h̄/mωx,y , which we
use in comparisons with experiment in later sections.

To next order beyond the linear confinement approximation,
we have introduced αx,αy � 1 as the dominant anharmonic
parameters, so that

ωx,y = 2π

λ

√
2
∣∣V 0

x,y

∣∣
m

,

(3.4)

αx,y = −8π2h̄

3λ2mωx,y

.

For plane waves, these quartic anharmonic terms are the
lowest order possible. More generally, the potential may be
neither parabolic nor sinusoidal. Examples of this include the
potential found in an optical fiber, which can be engineered
to any desired shape, and potentials found in experiments
using magnetic trapping or focused Gaussian beams. For this
reason, we expect cubic, quartic, and higher-order anharmonic
parameters in any real experiment. However, the quartic term
given above is due to spatial modulation on optical wavelength
scales. This is generally larger than cubic anharmonic terms
like r · ∇Vx caused by focusing effects.

For simplicity, we suppose that the dominant anharmonic
effects are caused by anharmonic parameters αx,y , and the
single-particle Hamiltonian is

Hi = − h̄2

2m
∇2

ri
+ 1

2
mω2

xx
2
i

(
1 + αxx

2
i /d

2
x

)
+ 1

2
mω2

yy
2
i

(
1 + αyy

2
i /d

2
y

)
(i = 1,2). (3.5)

TABLE I. Typical anharmonic parameters for CIR experiments
using optical lattices, following data from Haller et al. (Cs) [23]
and Fröhlich et al. (K) [24]. Quantitative values depend on the trap
frequency, which is varied over a range of values.

Experiment 133Cs 40K

Trap frequency, ω 2π × 14.5 kHz 2π × 80 kHz
Wavelength, λ 1.064 × 10−6 m 1.064 × 10−6 m
Atomic mass, m 2.22 × 10−25 kg 0.6635 × 10−25 kg
Length, dx,y 0.102 × 10−6 m 0.08 × 10−6 m
Anharmonicity, αx,y −0.121 −0.075

Thus, the trapping Hamiltonian (3.1) has the form of a
harmonic Hamiltonian Hh plus anharmonic terms Hx

a and H
y
a

in the x and y directions, respectively:

H1 + H2 = Hh + Hx
a + Hy

a = Hh + Ha. (3.6)

Next, we can estimate typical parameter values in recent
experiments, as shown in Table I. We note that in the Innsbruck
experiments with relatively large observed anomalies, the
dimensionless anharmonic parameter was typically 12%,
which is substantially larger than in the case of the Cambridge
experiment, with an anharmonicity of 7.5%. These parameters
are calculated for alkali-metal atoms, micron-wavelength
lasers, and typical 10–100-kHz trap frequencies. Obviously,
large changes in anharmonicities are easily obtained by
changing any of the relevant factors.

These anharmonic parameters lead to energy shifts in the
ACIRs, which we calculate below. More importantly, any type
of anharmonic potential allows a coupling between relative and
c.m. motion, which is otherwise prohibited due to the Kohn
theorem.

B. Center-of-mass energies

We can now make a preliminary estimate of atomic and
molecular energies in the two-particle sector, given the anhar-
monic trapping potential. These estimates assume sufficiently
tight internal binding so that only the c.m. energies are changed
by the anharmonicity. While this is not accurate near threshold,
it allows an estimate of the size of anharmonic perturbation
energies. It is also used to check the validity of subsequent
results in the tight-binding limit.

1. Atomic energy

For a single particle, the perturbation theory solution
including the anharmonic parameter is well known. We can
calculate how the free atomic energy,

E
(0)
A = (

nx + 1
2

)
h̄ωx + (

ny + 1
2

)
h̄ωy, (3.7)

is changed by the anharmonic perturbation. To first order
in perturbation theory, the modified transverse ground-state
energy is an elementary perturbation theory result, such that
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EA = E
(0)
A + E

(1)
A , where

E
(1)
A = 〈

ψnx,ny

∣∣Ha

∣∣ψnx,ny

〉
= 3

16 [2nx(nx + 1) + 1]h̄ωxαx + x ↔ y. (3.8)

Here, |ψnx,ny
〉 is the single-particle eigenstate of Hh, which

is treated as the zero-order wave function. For a threshold
resonance experiment, the incoming total energy of two
atoms initially in a transverse and longitudinal ground state
is therefore

Escatt = h̄ωx

(
1 + 3

8αx

) + (x ↔ y). (3.9)

Using the numbers in Table I, this indicates that the scale
of anharmonic energy perturbations should be around 5–10%
of the transverse trap frequency for the parameters of recent
experiments.

2. Molecular energy

In the c.m. relative-coordinate frame, with R = (r1 +
r2)/2, r = r1 − r2, the harmonic term is

Hh = H c.m.
h + H rel

h

= − h̄2

2M
∇2

R + 1

2
M

(
ω2

xX
2 + ω2

yY
2
) − h̄2

2μ
∇2

r

+ 1

2
μ

(
ω2

xx
2 + ω2

yy
2
) + U (r), (3.10)

and the anharmonic term is

Ha = Hx
a + Hy

a

= αxmω2
x

2d2
x

(
2X4 + 3X2x2 + x4

8

)
+ x ↔ y. (3.11)

Here, r = (x,y,z), R = (X,Y,Z), and M = 2m, μ = m/2 are
the mass of the c.m. and the reduced mass, respectively.

As a point of reference for the more detailed calculations
given below, we now consider how the c.m. energy of
molecular bound states changes due to anharmonicity. For
a broad Feshbach resonance, with strong binding so that the
internal molecular energy is not changed by the waveguide,
the internal molecular bound-state energy in free space for an
attractive interaction is known to be

E3D
b = − h̄2

ma2
3D

. (3.12)

For a tightly bound molecule described only by the c.m.
coordinates (X,Y ), the oscillator frequencies are ωx, ωy as
before. To first order in perturbation theory, the additional c.m.
energy Ec.m. of a tightly bound molecular state is therefore

Ec.m. = E(0)
c.m. + E(1)

c.m., (3.13)

where E(0)
c.m. = (Nx + 1

2 )h̄ωx + (Ny + 1
2 )h̄ωy , and

E(1)
c.m. = 〈

	NxNy

∣∣Ha

∣∣	NxNy

〉
= 3h̄ωxαx

32
[1 + 2Nx(Nx + 1)] + x ↔ y. (3.14)

Here, |ψNx,Ny
〉 is the single-molecule eigenstate of Hh, again

treated as the zero-order wave function, and E(0)
c.m. and E(1)

c.m. are
the harmonic and anharmonic contributions, respectively, to

the c.m. molecular energy. The reduced anharmonic correction
compared to the free atomic case is due to the reduced spatial
width of the wave function, caused by the increased molecular
mass compared to an atom.

C. Tightly bound resonance threshold

This allows us to make a relatively simple calculation.
A threshold condition in the tight-binding limit is obtained
from equating the total ground-state transverse energy of
two atoms with the total molecular energy in a c.m. excited
transverse state. It is convenient for later calculations to define
a dimensionless bound-state energy relative to unbound atoms
in a transverse waveguide as

ε ≡ Eb

h̄ωy

− 1

2
(1 + η), (3.15)

where η = ωx/ωy is the anisotropy of the two transverse
binding frequencies, and Eb = E3D

b in the strong-binding limit
of interest here. The correction term of − 1

2 (1 + η) is required
to take account of the difference in the transverse confinement
energies between the atoms and the molecular state, which
does not occur in free space.

After including the anharmonic corrections and excitation
energies from Eqs. (3.8) and (3.14), one obtains a resonance
condition for deeply bound molecular ACIRs in an intuitive
form as

Escatt = Eb + Ec.m.. (3.16)

On transforming this to dimensionless form, we obtain

ε + Ny + αy

[
3

16Ny(Ny + 1) − 9
32

]
+ η

{
Nx + αx

[
3

16Nx(Nx + 1) − 9
32

]} = 0. (3.17)

Clearly there are multiple resonances as Nx and Ny are
varied, thus altering the c.m. quantum numbers of the excited
transverse molecular states. The position of these resonances
is largely determined by the quantum numbers, together with
anharmonic shifts. In the next section, we show that wave-
function symmetries mean that the even-order resonances are
directly coupled by the strong quartic anharmonicities αx,αy .
Odd-order resonances are coupled through the relatively
weaker cubic anharmonic terms due to the r · ∇Vx terms,
which are physically caused by the slow variations in the
Gaussian envelope function of the trapping lasers in these
experiments.

The consequences are seen in Fig. 2, which shows the first
two strongly coupled even-order c.m. resonances, as compared
with the internally excited resonance position. The traditional
HCIR state in a one-dimensional harmonic waveguide is
identified by the solid line in Fig. 2. This curve is simply
the first internally excited state of the two-body ground state
[15,19]. One expects a CIR to occur whenever the solid curve
crosses the lowest horizontal line, thus permitting a resonance
to occur with incoming atoms near zero energy.

However, we see that there are also two further possibilities,
spaced both above and below the internally excited resonance.
These are the lowest-lying even-order ACIRs, which we expect
to be the dominant excitations in the case of anharmonic
waveguides. While this calculation is approximately correct
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FIG. 2. (Color online) Diagram of the confinement-induced
energy levels in an anisotropic trap or waveguide, with anisotropy
η. The solid line is an internally excited two-particle ground state.
The dashed lines correspond to c.m. excitations of the two-particle
ground state. Confinement-induced resonance thresholds occur when
these excited molecular states become resonant with two incoming
free particles with zero momentum. This is indicated by a star in the
internally excited CIR case, which is the only level coupled in the
case of a harmonic trap. For anharmonic traps, these additional levels
become coupled to input atomic states with zero transverse excitation
and acquire additional anharmonic energy shifts.

and gives an excellent intuitive picture, we carry out a
quantitative calculation in the following sections with the
inclusion of the internal degrees of freedom as well.

IV. ANHARMONIC CIR IN A QUASI-1D WAVEGUIDE

While Eq. (3.17) is valid for a relatively deeply bound
molecule, it neglects both anharmonic and waveguide cor-
rections to the internal molecular energy Eb. The question
of which transverse molecular quantum numbers Nx,Ny are
accessible in terms of selection rules also needs to be addressed
more carefully. In this section, we therefore treat the general
case of a quasi-1D confining waveguide with an asymmetric
confining potential. This case can be continuously changed to
the limit of the 2D trap, which is treated in more detail in the
following section. Owing to the small anharmonic parameter
α, the anharmonic term Ha is treated as a perturbation to Hh.

A. Harmonic CIR

First, we consider the anisotropic waveguide without the
anharmonic perturbation Ha . While this has been treated
previously [19], we revisit it here as a first step to solving
the anharmonic case. The origin of the confinement-induced
resonance is due to two scattering atoms forming a virtual
molecule via their s-wave interaction. The energy of the
resulting two-atom quasibound state in a waveguide is written
as

E
(0)
M = Ec.m. + Eb

= (
Nx + 1

2

)
h̄ωx + (

Ny + 1
2

)
h̄ωy + Eb. (4.1)

Here Ec.m. is the energy of the c.m. excitation, (Nx,Ny) are the
quantum numbers of the c.m., and Eb is the binding energy

of the two atoms. This becomes resonant with two incoming
atoms near zero momentum when E

(0)
M = Escatt, where Escatt

is the incoming free-particle energy. This is trivially given in
the zero-momentum, harmonic case by

Escatt = 2E
(0)
A = h̄ωx + h̄ωy. (4.2)

By solving the eigenproblem of the relative Hamiltonian
of the two atoms, H rel

h , we can obtain the relation between
the binding energy Eb and the 3D s-wave scattering length
a3D. This is known from previous work [19] by solving for
the dimensionless energy ε of the molecular ground state,
where ε ≡ Eb/h̄ωy − (η + 1)/2, as given in Eq. (3.15). We
note that, just as with Eq. (3.15) in the previous section, the
dimensionless energy ε is defined so that it includes the change
in transverse confinement energies. With this definition, Eb

reduces to the free-space binding energy in the limit of weak
confinement or strong binding.

The dimensionless ground-state molecular energy ε is given
by an implicit equation [19]:

dy

a3D

= − 1√
π
F1(ε,0), (4.3)

where the right-hand side (RHS) is defined by the definite
integral

F1(ε,0) =
∫ ∞

0
dt

[ √
η exp(εt/2)√

t(1 − e−ηt )(1 − e−t )
− 1

t3/2

]
.

(4.4)

In the strong-binding limit, the limiting behavior of this
integral is

lim
ε→−∞ −F1(ε,0)√

π
=

√
2|Eb|
h̄ωy

. (4.5)

This is leads to the free-space three-dimensional binding en-
ergy result, Eq. (3.12), as one expects in this limit. Combining
Eqs. (3.15) and (4.1), the threshold condition for a harmonic
trap can be summarized compactly in one equation as

ε + Nxη + Ny = 0, (4.6)

so that

dy

a3D
= − 1√

π
F1(−[Nxη + Ny],0). (4.7)

Further resonances are anticipated if we consider relative
atomic motion. Such an internally excited molecular state is
described by a completely different integral equation. For the
first excited state of the internal motion, one obtains

dy

a3D

= − 1√
π
Fe(εe,0), (4.8)

where the RHS is now defined by the definite integral

Fe(εe,0)

=
∫ ∞

0
dt

[
eεet/2

√
η

t

(
1√

(1 − e−ηt )(1 − e−t )
− 1

)
− 1

t3/2

]
.

(4.9)
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The CIR threshold condition including both internal and
c.m. excitations is therefore

εe + Nxη + Ny = 0, (4.10)

so that

dy

a3D

= − 1√
π
Fe(−[Nxη + Ny],0). (4.11)

Equations (4.6) and (4.10) give threshold conditions in the
limit of small anharmonicity, for coupling to either the internal
ground or excited state, respectively, with center-of-mass
quantum numbers included in the final resonant state.

As such, they give an elegant picture of the possible
resonances, including both internal and c.m. excitations.
However, if the anharmonic term Ha is not included, the two
incoming atoms in a transverse ground state cannot couple to
the transverse excited molecular states during the collision.
Hence, for harmonic confinement there is only one observable
CIR no matter how anisotropic the transverse confinement
[19]. This is described by the last equation above, Eq. (4.11),
on setting Nx = Ny = 0.

In reality, anharmonic terms do occur. These lead both to
couplings that allow c.m. excitations and to energy shifts which
alter the resonance locations. In the following analysis, we
assume that there are only c.m. excitations, and we apply
perturbation theory to the bound-state c.m. energies predicted
by Eq. (4.6).

B. Anisotropic, anharmonic CIR

If the anharmonic perturbation Ha is now introduced,
the c.m. motion is mixed with the relative motion by the
anharmonicity of the confining trap. Then the transversely
excited c.m. molecular states can couple to the scattering
state of the two incoming atoms in the transverse ground
state. However, both the atomic and molecular states now
have energy levels shifted by anharmonic corrections. This
means that the fundamental resonance equation is modified
from Eq. (4.6) for the harmonic trap case. It is now

ε + Nxη + Ny + εa(Nx,Ny) = 0, (4.12)

where εa(Nx,Ny) is the anharmonic correction to the relative
energy levels for a c.m. excitation with quantum numbers
(Nx,Ny). This has been treated already in the deeply bound
limit in Eq. (3.17). We now treat this in the general case.

From Eq. (3.8), one must include the input anharmonicity
in the atomic levels, which for the case of two atoms in an
initial atomic transverse ground state is given by Eq. (3.9).
Next, we consider the effects of anharmonicity on the bound
or molecular energies.

With a quartic anharmonicity which is symmetric around
the origin, there are constraints on the types of coupling that
can occur to the c.m. motion. In particular, with a symmetric
input state having Nx = Ny = 0, one must have a symmetric
resonance state. This implies that only even c.m. quantum
numbers are strongly coupled. There is also a weak coupling
to odd c.m. quantum numbers, caused by cubic anharmonic
parameters, which we treat in the next section. The lowest of
the strong nonlinear resonances occurs when (Nx,Ny) = (2,0)

or (0,2). Consequently the resonance splits if the transverse
confinement is anisotropic.

We give a detailed calculation of the effects of anharmonic
confinement on the bound-state energies of these resonances in
the Appendix. Using these results, we arrive at the resonance
condition for the Nx = 2 state,

ε + 2η + αxη

(
27

32
− 5η

32ε
+ 3η2

320ε2

)

+ αy

(−9

32
− 1

32ε
+ 3

320ε2

)
= 0. (4.13)

In like manner, the resonance condition for the Ny = 2 state is

ε + 2 + αxη

(−9

32
− η

32ε
+ 3η2

320ε2

)

+ αy

(
27

32
− 5

32ε
+ 3

320ε2

)
= 0. (4.14)

These results can be compared with those of Eq. (3.17),
which were obtained in the previous section dealing with the
case of a deeply bound molecular state. On dropping terms
scaling with 1/ε, the two conditions agree in the limit of strong
molecular binding, with ε → −∞.

For experiments using optical lattices with equal wave-
lengths in each direction, one finds that

αxη = αy ≡ α. (4.15)

Then the resonance conditions can be reduced to a simpler
form. For (Nx,Ny) = (2,0), one obtains

ε + 2η + α

(
9

16
− 5η + 1

32ε
+ 3(η2 + 1)

320ε2

)
= 0, (4.16)

and for (Nx,Ny) = (0,2),

ε + 2 + α

(
9

16
− η + 5

32ε
+ 3(η2 + 1)

320ε2

)
= 0. (4.17)

Solving these equations requires the use of a nonlinear-
equation-solving numerical algorithm, like the Newton-
Raphson method, which we use in Fig. 3 to obtain theoretical
results for comparison with experiment.

Now we are ready to understand the dominant effects
observed in the recent Innsbruck experiment [23]. The atoms
are prepared in a 1D tube geometry using two orthogonal
pairs of counterpropagating laser fields to create a trapping
environment. In the case of transverse isotropic confinement,
due to the small collision energy and large energy interval
between the transverse energy levels, only the first excited
molecular states (Nx = 2,Ny = 0) and (Nx = 0,Ny = 2) of
the c.m. motion which are degenerate can couple to the
scattering state of two incoming atoms. In this isotropic
situation, the results of ACIR are similar to those of HCIR
and also agree well with the experiment, as long as the
anharmonicity of the confinement is not too large. Owing to
the broad resonances and fitting techniques used, the isotropic
experimental data have too little precision to accurately
distinguish between ACIRs and CIRs.

By increasing the transverse anisotropy η = ωx/ωy , the
molecular states (Nx = 2,Ny = 0) and (Nx = 0,Ny = 2) of
the c.m. motion are no longer degenerate. A splitting of the

043619-7



PENG, HU, LIU, AND DRUMMOND PHYSICAL REVIEW A 84, 043619 (2011)

FIG. 3. (Color online) The predictions of ACIRs using first-order
anharmonic perturbation theory comparing with the experimental
data [23]. The black solid curve is the result of a generalized Olshanii
HCIR model [19]. Here the anisotropy η is changed by increasing the
frequency ωx with a fixed ωy = 2π × 13.2(2) kHz (or ω1 in Ref. [23]),
which resulted in an anharmonic parameter of α = −0.133.

ACIR is expected, which has been observed in the experiment.
By contrast, no splitting of the linear HCIR is predicted.
Thus, the double resonance observed experimentally is a
clear signature of the ACIR. It is also a sign that if there
is any internally excited HCIR effect in this experiment, it
is relatively suppressed compared to the ACIR effect, which
involves c.m. excitations.

The theoretical predictions of the CIRs compared with the
experimental results [23] are presented in Fig. 3. As we can
see, the predictions of the c.m.-relative coupling theory are
consistent with the experimental data.

In these experiments, the resonances were identified as
occurring at the point of maximum molecular loss. This leads
to an offset between the apparent and true resonance due
to finite resonance widths. To compensate for this in the
original experimental publication, the data were fitted to the
isotropic HCIR prediction by adding a small constant offset to
make it equal to the theoretical results at η = 1. We follow a
similar fitting procedure here, for consistency, but we fit the
offset to the isotropic ACIR prediction instead. Note that the
anharmonic parameter is different from that used in Table I,
because Table I gives values representative of a range of
experiments, while in each of the figures we use the data from
the relevant experiment.

At the point η = 1, there is transversely isotropic confine-
ment, and the ACIR prediction is in accord with the Olshanii
CIR, apart from anharmonic corrections. However, as the
transverse confinement becomes more and more anisotropic,
the internally excited HCIR persists as a single resonance
except for a small frequency shift [19]. Both ACIR theory
and experiment show a clear splitting of the original resonance
with increasing trap asymmetry. There is excellent quantitative
agreement in the amount of splitting. In these experiments,
there is strong evidence for the c.m. excited ACIRs.

C. Multiple-resonance ACIR at large anisotropy

As the transverse anisotropy η becomes even larger,
the energy spacing in the y direction decreases, and more
transversely excited molecular states can readily couple to
the initial scattering state. Consequently, more additional
c.m. resonances can occur. By contrast, there is still only
one internal HCIR predicted no matter how large the
transverse anisotropy. However, several multiple resonances
are observed experimentally at large anisotropy. In order
to understand these, we now consider the other transverse
states.

As in the previous section, given any coupling parameter
(a3D), the unperturbed binding energy ε is determined by
Eq. (4.3), which as an implicit equation involving the integral
F1(ε,0). We then use perturbation theory to calculate the
dimensionless anharmonic energy shift εa . Hence, we obtain
the ACIR position of a3D for arbitrary odd and even c.m.
quantum numbers from the solutions to the overall resonance
equation, Eq. (4.12).

For brevity, we refer to an arbitrary molecular c.m.
resonance as simply (Nx,Ny). The general form of the resulting
anharmonic shifts is derived in the Appendix for arbitrary
quartic anharmonic parameters. We include both odd- and
even-order resonances because, as remarked earlier, there are
both cubic and quartic anharmonic couplings, which leads to
the possibility of both even and odd ACIRs. However, for
simplicity we do not include the relatively small cubic energy
shifts.

For comparison to current experiments, we are interested in
the case of equal optical trapping wavelengths, which means
that αxη = αy ≡ α. From the Appendix, the general form of
the resulting anharmonic shifts for resonances corresponding
to the (Nx,Ny) c.m. state is as follows:

εa(Nx,Ny)/α = 3
(
N2

y + Ny + N2
x + Nx

) − 9

16

− 2Ny + 1 + η(2Nx + 1)

32ε
+ 3(η2 + 1)

320ε2
.

(4.18)

This allows the positions of the ACIR denoted by a3D to be
calculated. In the experimental reports of multiple resonances
at large anisotropy (Fig. 4 [23]), the loss rates are plotted as
a function of magnetic field, rather than a3D. We therefore
make use of the relation between the 3D scattering length a3D

and B field for the relevant 137Cs Feshbach resonance [31],
which is

a3D

abg

= B − 18.1

B + 11.1

B − 47.944

B − 47.78

B − 53.457

B − 53.449
(4.19)

and

a3D

abg

= 1

1875a0

√
h̄η

mωx

a3D

ay

= 0.681
√

η
a3D

ay

. (4.20)

Hence, the predicted magnetic field at resonance can be cal-
culated. In order to compare our theory to these experiments,
the regime of anisotropy η considered is [1.4,2.3]. We also
note that in these experiments the trapping frequency ωy is
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FIG. 4. (Color online) The resonant magnetic field B vs
anisotropy η at ACIRs (solid and dotted lines identified alongside the
figure) from first-order anharmonic perturbation theory comparing
with the Innsbruck experimental data (circles). Data are extracted
from multiple resonance scans [23] at absorption edges. Here the
anisotropy η is changed by decreasing the frequency ωy with a fixed
ωx = 2π × 16.6(2) kHz, which results in an η-dependent anharmonic
parameter α = −0.106η.

varied, so the effective anharmonicity parameter α therefore
changes at different anisotropy.

Then main results are summarized in Fig. 4, which
compares theory to experiment. The experimental resonance
points are obtained from the raw data as the start of the res-
onance edges, which is appropriate for this type of resonance
experiment. No fitting parameters or shifts are employed. Since
error bars were not given in the experimental plot, we are
unable to estimate these.

Most observed resonances can be easily identified, which
are coded in the same color as the corresponding theoretical
predictions. There are 25 identified resonances, all of which are
in excellent agreement with theoretical calculations. However,
there are 5 smaller resonances not identified, which are
indicated by the open triangles.

Apart from experimental issues, possible explanations for
these unidentified peaks include the following.

Higher-order many-body ACIRs. Combination four-body
cluster resonances could occur at intermediate points between
the identified two-body resonances. For example, the three
unidentified resonances between (0,1) and (0,2) could be
caused by the simultaneous excitation of (0,1) and (0,2)
in a four-body collision. Similarly, the three resonances we
have identified as (1,1) resonances could also be caused by
four-body excitation of (0,3) and (0,4) ACIRs.

Anharmonically shifted internal HCIRs. We have not
calculated these, as the anharmonic shifts of these resonances
are outside the scope of this paper. However, this mechanism
provides a possible explanation for the two unidentified
resonances between (0,4) and (2,0).

V. ANHARMONIC CIR IN A QUASI-2D SYSTEM

For a quasi-2D system, atoms are tightly confined in
the axial direction and can freely move in two transverse

directions. In the following section, we derive the anharmonic
CIR properties in this case as well. As we show, these results
can be also obtained from results in the previous section by
taking one of the confinement frequencies to zero. However,
the direct calculation given here is an important check on the
consistency of our approach. In the case of an optical lattice,
the trapping potential is of the form

U ext(r) = Vz cos2

(
2πz

λ

)

≈ 1

2
mω2z2

(
1 + αz2

d2

)
. (5.1)

Here, Vz is the potential well depth with one standing-wave
trapping laser at optical wavelength λ. This leads to the trap
frequency ω in the z direction. We note that cubic anharmonic
terms are also possible due to focusing effects in this case.

As before, we use a scale length of the reduced oscillator
length d = √

2h̄/mω and define a single-atom oscillator length
a⊥ = √

h̄/mω, and a small anharmonic parameter α, so that
for an optical lattice

α = −8π2h̄

3λ2mω
. (5.2)

The Hamiltonian of two atoms in a quasi-2D system is then

H = H1 + H2 + U (r1 − r2), (5.3)

where

Hi = − h̄2

2m
∇2

ri
+ 1

2
mω2z2

i

(
1 + α

z2
i

d2

)
(i = 1,2). (5.4)

As previously, U (r1 − r2) is the interatomic interaction, and
we set

R = 1
2 (r1 + r2),

(5.5)
r = r1 − r2 .

Then Eq. (5.3) becomes

H = Hh + Ha, (5.6)

where

Hh =
(

− h̄2

2M
∇2

R + 1

2
Mω2Z2

)

+
[
− h̄2

2μ
∇2

r + 1

2
μω2z2 + V (r)

]
= H c.m.

h + H rel
h (5.7)

Ha = α
mω2

2d2

(
2Z4 + 3Z2z2 + 1

8
z4

)
. (5.8)

Here r = (x,y,z), R = (X,Y,Z), and M = 2m, μ = m/2.
Owing to the small anharmonic parameter α, the anhar-

monic term Ha can be treated as a perturbation to Hh. First,
consider the case without the small perturbation Ha . An
anharmonic confinement-induced resonance is expected when
the energy of the virtual molecule is degenerate with the energy
of two incoming atoms from the axial ground state,

E
(0)
M = Ec.m. + Eb = Escatt, (5.9)
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where Ec.m. = (N + 1
2 )h̄ω, Escatt = h̄ω, the binding energy Eb

is determined by

d

a3D

= − 1√
π
F2(ε,0), (5.10)

and the integral expression required here is given by

F2(ε,0) =
∫ ∞

0
dt

[
exp

(
1
2εt

)
t
√

1 − e−t
− 1

t3/2

]
. (5.11)

We define Eb = (ε + 1/2)h̄ω, d = √
h̄/μω. The lowest res-

onance occurs as N = 2; however, this is not coupled to the
incoming states unless there is an anharmonic term in the
potential.

If the anharmonic term Ha is included, we need to consider
how the energy of the input atomic states and virtual molecule
EM is affected by this perturbation.

A. The anharmonic energy E(1)
M

Including the first-order modification E
(1)
M , we arrive at the

following integral equation for ε:(
N + 1

2

)
h̄ω + (

ε + 1
2

)
h̄ω + E

(1)
M (ε) = h̄ω + 3

8αh̄ω.

(5.12)

By solving this equation, the binding energy ε(R) at the
resonance is obtained. Then substituting ε(R) into Eq. (5.10),
we obtain the 3D scattering length a

(R)
3D at the resonance.

Following the general procedure outlined in the Appendix,
we find that a resonance occurs at

N + ε + α

32

[
6N (N + 1) − 9 − (2N + 1)

ε
+ 3

10ε2

]
= 0.

(5.13)

Hence, we obtain the equation that ε should satisfy for states
with N = 2,

ε + 2 + α

(
27

32
− 5

32ε
+ 3

320ε2

)
= 0. (5.14)

This result is identical to Eq. (4.14) in the limit of η → 0,
as one might expect, since the quasi-1D trap becomes two-
dimensional in this limit. However, it is instructive that one
cannot regain this limit directly from Eq. (4.17), which holds
for optical lattices with equal wavelengths. The reason is very
simple: in an optical lattice at low transverse confinement
frequency, the transverse wave function becomes more and
more deconfined. This increases the relative anharmonicity,
as given in Eq. (3.4), so that α ∼ 1/ω. Therefore, our
anharmonic perturbation theory would break down for a
weakly confined 1D system described by Eq. (4.17). Optical
lattices that are only weakly confining require a full Bloch
wave-function theory, typically requiring detailed numerical
diagonalization [32].

From Eq. (5.14), we can calculate the relative binding
energy ε for the states of N = 2 in the two-dimensional limit.
Then, substituting into Eq. (5.10), the corresponding resonance
scattering length a

(R)
3D is obtained. Here, in order to calculate

ε numerically, we use the Newton-Raphson method as before,
together with a numerical calculation of F2(ε,0). The position

FIG. 5. (Color online) Predicted resonance positions of 2D CIRs
as a function of the dimensionless anharmonic parameter α. The
experimental data point is an average from experiments [23], plotted
at the average anharmonicity value.

of the ACIR denoted by the 3D scattering length as a function
of the anharmonic parameter αd2 is presented in Fig. 5, and we
can see that the 2D ACIR is predicted at the regime of a3D > 0.
This is in contrast to the internal HCIR, which occurs for the
attractive regime with a3D < 0.

Now we can compare these predictions with 2D resonances
observed in the recent Innsbruck experiment [23]. When one
of the lattice lasers is turned off, the system approaches a 2D
geometry. All resonances disappear except one at a3D > 0.
Given the average anharmonicity in this experiment of α =
−0.121, we expect as shown in Fig. 5 to find a resonance at

a3D = 0.85a⊥. (5.15)

The observed resonances occur at a constant ratio between
a3D and a⊥, such that

a3D

a⊥
a3D = 0.84(3). (5.16)

This is consistent with the prediction of 2D ACIR. The
anharmonicity α in the experiments was varied through a small
range as the trapping frequency varied, and we have calculated
the ratio at the average anharmonicity.

Finally, we plot the predicted variation of a
(R)
3D with

transverse confinement parameter a⊥, at a fixed value of ωα

corresponding to the Innsbruck experiments, in Fig. 6. These
data are also in excellent quantitative agreement with ACIR
predicted resonance positions.

In anharmonic trap experiments, we would generically
expect both the ACIR at a3D > 0 and the internal HCIR
at a3D < 0 to be observed. The Innsbruck experiments [23]
show clear evidence for the ACIR but not the internal HCIR.
The Cambridge experiments [24] have shown evidence for
HCIRs, although the magnetic field scans were not large
enough to observe any ACIRs. The question of which is
observed depends on the size of the anharmonic parameter, the
dynamics of the experiment, and the method of detection of the

043619-10



CONFINEMENT-INDUCED RESONANCES IN ANHARMONIC . . . PHYSICAL REVIEW A 84, 043619 (2011)

FIG. 6. (Color online) Predicted resonance positions of 2D
ACIRs as a function of the transverse confinement parameter, a⊥. The
experimental data points are taken from [23], where circles indicate
resonances identified by absorption edges.

resonance. It appears likely that the molecular loss technique
is particularly sensitive to c.m. resonances.

VI. CONCLUSION

We have extended the theory of the harmonic confinement-
induced resonance to include the effects of anharmonic con-
finement, or ACIR, since previous harmonic theories cannot
explain the phenomena observed in recent experiments. In
the presence of anharmonic perturbation of the confinement
trap, the c.m. motion of two atoms couples to the relative
motion, and additional resonances appear. We have calculated
the energy of the resulting resonances up to first order in
perturbation theory. The results agree well with experiments,
with both even- and odd-order multiple resonances being
found. These differences are not just small perturbations on
previous HCIR predictions, and they show large qualitative
differences from the predictions for harmonic traps.

ACIRs due to c.m. excitations are always present in
Feshbach systems with any form of transverse confinement.
The important issue is that for harmonic traps the Kohn
theorem prevents these resonances from being coupled to
incoming atoms in the two-body sector of the c.m. ground
state. However, experimental optical traps do have relatively
large anharmonic parameters, which allows the resonances
due to c.m. motion to be coupled to incoming scattering
states. We find excellent quantitative agreement between
ACIR predictions and recent experimental observations of
confinement resonances, in both one- and two-dimensional
traps.
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APPENDIX: ANHARMONIC PERTURBATION THEORY

We consider how the relative anharmonic energy of the
virtual molecule εa , Eq. (4.12), is calculated from the anhar-
monic perturbation Ha , including the effects of anharmonicity
on both relative and c.m. motion. For space reasons, we do not
give all the overlap integrals, as the calculations are similar in
all cases. Instead, we focus on the most important cases.

First, note that the dimensionless change in the relative
anharmonic perturbation energy is

εa = 1

h̄ωy

[
E

(1)
M − 2E

(1)
A

]
, (A1)

where E
(1)
A is the perturbed atomic anharmonic energy given

in Eq. (3.8), and E
(1)
M is the first-order perturbation theory

correction to the energy of the virtual molecule:

E
(1)
M = 〈

	NxNy
ψb

∣∣Ha

∣∣ψb	NxNy

〉
. (A2)

Here, |	NxNy
ψb〉 = |	NxNy

〉|ψb〉 is the eigenstate of Hh. This
is treated as the zero-order wave function and includes both
relative and c.m. motion. Next, we introduce |	NxNy

〉 as the
unperturbed wave function of the c.m. Hamiltonian, so that∣∣	NxNy

〉 = ∣∣φNx

〉∣∣φNy

〉
(A3)

with the standard two-dimensional harmonic oscillator solu-
tion of

∣∣φNx,y

〉 = exp
(−2ξ 2

x,y

)
HNx,y

(2ξx,y)√
π1/2dx,y2Nx,y−1Nx,y!

, (A4)

where ξi = (X/dx,Y/dy). We now turn to the task of evaluating
E

(1)
M , the anharmonic correction to the total molecular energy

at a given unperturbed dimensionless energy ε.

1. The relative wave function |ψb〉
The specific form of |ψb〉 can be obtained by directly

solving the eigenproblem of H rel
h ,[

− h̄2

2μ
∇2

r + 1

2
μω2

xx
2 + 1

2
μω2

yy
2 + V (r)

]
|ψ〉 = E|ψ〉.

(A5)

The wave function |ψ〉 can be written as

|ψ〉 = ψ0(r) −
∫ ∞

0
dr′GE(r,r′)V (r′)ψ(r′)

= ψ0(r) − R · 2πh̄2a3D

μ
GE(r,0), (A6)

where ψ0(r) is the regular solution of Eq. (A5) and

R =
[

∂

∂r
rψ(r)

]
r=0

. (A7)

Here, we have used the pseudopotential approximation. For
a bound state, the solution of Eq. (A5) |ψ〉 should vanish as
r → ∞; hence, ψ0(r) = 0 . Then the constant R is only a
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normalization coefficient. The Green’s function GE(r,r′) is
the solution of the following equation:[

− h̄2

2μ
∇2

r + 1

2
μω2

xx
2 + 1

2
μω2

yy
2 − E

]
GE(r,r′)

= δ(r − r′). (A8)

The form of the Green’s function GE(r,0) for a bound state
can be easily calculated,

Gε<0(r,0) =
√

ηI1(r)

2π3/2d3h̄ωy

exp

(
−ηx2 + y2

2d2

)
, (A9)

where we introduce the integral representation,

I1(r) =
∫ ∞

0
dt

exp
(

ε
2 t − 1

t
z2

d2 − e−ηt

1−e−ηt

ηx2

d2 − e−t

1−e−t

y2

d2

)
√

t(1 − e−ηt )(1 − e−t )
.

(A10)

Recalling that η = ωx/ωy , and E = (ε + η/2 + 1/2)h̄ωy , the
bound-state wave function is

|ψb〉 = N exp

(
−ηx2 + y2

2d2

)
I (r), (A11)

where N is the normalization coefficient.

2. 1D c.m. overlap terms

We can now calculate the overlap integrals which give
the anharmonic contributions to the quasi-1D and quasi-2D
ACIRs. In order to calculate the first-order modification E

(1)
M ,

we focus on the (Nx,Ny) c.m. state. The relevant terms are
〈	NxNy

|X4|	NxNy
〉, 〈	NxNy

|Y 4|	NxNy
〉, 〈	NxNy

|X2|	NxNy
〉,

and 〈	NxNy
|Y 2|	NxNy

〉.
We define Dx,y = √

h̄/2mωx,y = dx,y/2 as the transverse
confinement parameter of an atom pair in the following
calculation. Hence:

〈
ψNxNy

∣∣X4
∣∣ψNxNy

〉 = 1√
πDx2Nx Nx!

∫ ∞

−∞
X4 exp

(
−X2

D2
x

) [
HNx

(
X

Dx

)]2

dX

= 1√
πDx2Nx Nx!

D5
x

√
π2Nx Nx!

[(
Nx + 1

2

) (
Nx + 3

2

)
+ 1

2
Nx(Nx − 1)

]

=
[(

Nx + 1

2

) (
Nx + 3

2

)
+ 1

2
Nx(Nx − 1)

]
D4

x, (A12)

〈
ψNxNy

∣∣X2
∣∣ψNxNy

〉 = 1√
πDx2Nx Nx!

∫ ∞

−∞
X2 exp

(
−X2

D2
x

) [
HNx

(
X

Dx

)]2

dX

= 1√
πDx2Nx Nx!

D3
x

√
π2Nx Nx!

(
Nx + 1

2

)
=

(
Nx + 1

2

)
D2

x. (A13)

By using the exchange symmetry of x and y, we can easily obtain〈
ψNxNy

∣∣Y 4
∣∣ψNxNy

〉 = [(
Ny + 1

2

)(
Ny + 3

2

) + 1
2Ny(Ny − 1)

]
D4

y, (A14)〈
ψNxNy

∣∣Y 2
∣∣ψNxNy

〉 = (
Ny + 1

2

)
D2

y. (A15)

Here, we have used the formulas ∫ ∞

−∞
dtt2e−t2

H 2
n (t) = √

π2nn!

(
n + 1

2

)
, (A16)∫ ∞

−∞
dtt4e−t2

H 2
n (t) = √

π2nn!

[(
n + 1

2

) (
n + 3

2

)
+ 1

2
n(n − 1)

]
. (A17)

3. 1D internal motion overlap terms

The relevant terms are now 〈ψb|x4|ψb〉, 〈ψb|y4|ψb〉, 〈ψb|x2|ψb〉, and 〈ψb|y2|ψb〉. For the bound state of the relative motion |ψb〉,
the main contribution of the integrals, e.g., 〈ψb|x4|ψb〉, etc., comes from the regime around the origin. We note that the energy
parameter ε is negative. The form of |ψb〉 near the origin r = 0 can be easily obtained from Eq. (A11),

|ψb〉 ≈
(−ε

2

)1/4 1√
πdy

exp(−√−2εr/dy)

r
, (A18)

which has been normalized. Then,

〈ψb|x2|ψb〉 = 1

πdy

√−ε

2

∫ 2π

0

∫ π

0

∫ ∞

0
r2 sin3 θ cos2 φ exp

(
− 2

√−2εr

dy

)
drdθdφ = − d2

y

12ε
, (A19)

〈ψb|x4|ψb〉 = 1

πdy

√−ε

2

∫ 2π

0

∫ π

0

∫ ∞

0
r4 sin4 θ cos4 φ

exp(−2
√−2εr/dy)

r2
r2 sin θdrdθdφ = 3d4

y

40ε2
, (A20)
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〈ψb|y2|ψb〉 = 1

πdy

√−ε

2

∫ 2π

0

∫ π

0

∫ ∞

0
r2 sin2 θ sin2 φ

exp(−2
√−2εr/dy)

r2
r2 sin θdrdθdφ = − d2

y

12ε
, (A21)

〈ψb|y4|ψb〉 = 1

πdy

√−ε

2

∫ 2π

0

∫ π

0

∫ ∞

0
r4 sin4 θ sin4 φ

exp(−2
√−2εr/dy)

r2
r2 sin θdrdθdφ = 3d4

y

40ε2
. (A22)

4. The first-order modification of the energy E(1)
M

Using the overlap integral results given above, we find that

〈
ψNxNy

ψb

∣∣Hx
a

∣∣ψNxNy
ψb

〉 = αxh̄ωx

32

[
6Nx(Nx + 1) + 3 − η(2Nx + 1)

ε
+ 3η2

10ε2

]
, (A23)

〈
ψNxNy

ψb

∣∣Hy
a

∣∣ψNxNy
ψb

〉 = αyh̄ωy

32

[
6Ny(Ny + 1) + 3 − (2Ny + 1)

ε
+ 3

10ε2

]
. (A24)

Combining this with the atomic energy correction gives the overall result for an equal-wavelength 1D optical lattice, in which
αxωx = αyωy :

ε(1D)
a = α

32

[
6
(
N2

y + Ny + N2
x + Nx

) − 18 − η(2Nx + 1) + (2Ny + 1)

ε
+ 3(η2 + 1)

10ε2

]
. (A25)

Following similar procedures, from Eq. (A24), the anharmonic correction in the corresponding 2D case leads to

ε(2D)
a = α

32

[
6N (N + 1) − 9 − (2N + 1)

ε
+ 3

10ε2

]
. (A26)
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